Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.17.301614

ABSTRACT

We are in the midst of the third severe coronavirus outbreak caused by SARS-CoV-2 with unprecedented health and socio-economic consequences due to the COVID-19. Globally, the major thrust of scientific efforts has shifted to the design of potent vaccine and anti-viral candidates. Earlier genome analyses have shown global dominance of some mutations purportedly indicative of similar infectivity and transmissibility of SARS-CoV-2 worldwide. Using high-quality large dataset of 25k whole-genome sequences, we show emergence of new cluster of mutations as result of geographic evolution of SARS-CoV-2 in local population ({greater than or equal to}10%) of different nations. Using statistical analysis, we observe that these mutations have either significantly co-occurred in globally dominant strains or have shown mutual exclusivity in other cases. These mutations potentially modulate structural stability of proteins, some of which forms part of SARS-CoV-2-human interactome. The high confidence druggable host proteins are also up-regulated during SARS-CoV-2 infection. Mutations occurring in potential hot-spot regions within likely T-cell and B-cell epitopes or in proteins as part of host-viral interactome, could hamper vaccine or drug efficacy in local population. Overall, our study provides comprehensive view of emerging geo-clonal mutations which would aid researchers to understand and develop effective countermeasures in the current crisis.


Subject(s)
COVID-19
2.
preprints.org; 2020.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202003.0320.v1

ABSTRACT

We are witnessing the severe third outbreak mediated by coronaviruses affecting global public health with unprecedented economic consequences. A better understanding of its phylogenetics, exploration of sequence features and mutational changes could unveil its genealogy to gain insights into the mechanism of transmission and development of possible interventions. Our comparative genomic analyses of >160 isolates of SARS-CoV-2 reveal phylogenetic kinship with other coronaviruses and emergence of evolutionary divergence in clinical isolates. t-SNE-based clustering revealed different clades but no continent specific clusters. Amino acid substitutions at RBD of spike protein provide possible reasons for rapid transmission. Few proteins specific to SARS-CoV-2 were identified which could have implications as therapeutic targets and diagnostic biomarkers. Virtual screening identified repurposed drugs, known nutraceuticals, for specific interventions. These phylogenetic observations reveal the ancestry and computational studies reveal the emergency measures to interject this emerging pathogen that pose threat to whole of mankind.

SELECTION OF CITATIONS
SEARCH DETAIL